Monday, January 27, 2020
How Can a Nurse Improve and Develop Professional Identity?
How Can a Nurse Improve and Develop Professional Identity? According to DeJong 2014, professionalism can be defined as the means of acting in an acceptable and appropriate way while adhering to a professional code of conduct. It also means completing given tasks and responsibilities on time. On the other hand a Professional identity can be described as a set of principles that define a person in their professional career. A professional identity can also be defined according to the attitudes, beliefs, experiences, ideals, professional involvement, need for advancement and codes of a given career. These virtues determine the kind of people we interact with in our lines of profession. These experiences and professional interactions tend to define ones professional identity. In the line of nursing professionalism is significantly essential if nurses are expected to provide quality and effective services and care to their clients and to the population as a whole. In health care Professionalism is regarded as a bridge between the interests of the nurse and the needs of society. It is evident that better professionalism is associated with good medical care and better health outcomes in general. (DeJong et al 2014). Nurses need to be able to develop and improve their imaginative and creative skills in order to attain and improve effective patient care. In a research by Oââ¬â¢Brien, Strzyzewski and Szpara 2013, on nurses working in the surgical department it was found that by creating an organized process of educational projects to encourage, support and promote professionalism nurses were able to improve their professional identity and complete their practice successfully safely and effectively. In order to achieve the best results Clinical Nurse Specialist (CNS) and Educational Nurse Coordinators (ENCs) in the surgical unit developed meetings for nurses with the medical librarians and unit leaders. Teaching was carried out by use of posters and oral presentations. Through this nurses were able to master effective ways of generating ideas and implementing them to complete projects. (Oââ¬â¢Brien, Strzyzewski and Szpara 2013). There are many factors that influence professional competence for nurses for example organization of work, personal characteristics, cognitive abilities and clinical knowledge. In order for a nurse to be able to undergo Professional growth they need to be committed to their work in order to able to fulfill their work tasks. Professional identity is usually accompanied by the workersââ¬â¢ self-concept; self-respect, identity, essential nature, team spirit and values. Moreover for a nurse to improve their professional identity they need to be flexible and resilient in their field of work. This means that nurses need to believe in oneself and be willing to take risks. In addition to that they have a career insight in order to be able to establish realistic career goals by being aware of their strengths and weaknesses. (Tamm 2010). There are some inevitable factors in the health sector that demand for professional growth and that has impact on the management, employers and the employees. First creation of new knowledge, there are changes in the scientific and technical knowledge every few years which demand nurses to update their education levels from time to time. Secondly technological innovations are taking place so rapidly that nurses have to be willing to sharpen their skills and change with the changing times. Lastly, the upcoming of more challenging tasks demands for professional development in order for nurses to be able to cope efficiently. (Willetts and Clarke 2012). Development of professional identity according to Tamm 2010, starts with how individuals view their work roles and how good they manage their work life and related practices. Moreover professional identity is a process of becoming independent and having self-awareness through work. For a nurse to be able to develop and improve their identity they first have to have a professional self-concept and respect, in short they need to accept their roles as nurses. Nurses begin to build their professional identities during their study period and continue to develop all through their work life. Development of professional identity is a life course process comprising of different stages. Which range from novice to expert. (Tamm et al 2010). In conclusion development is accompanied by professional maturity which is a nurseââ¬â¢s preparedness to handle work tasks in different phases of their work. Nurses need to be cognitively prepared, this means that they need to have sufficient knowledge on principles of health care to be able to apply them in real life situations. In additional to that nurse need to have knowledge on the nature of the profession and the occupational sphere. (Willetts et al 2012). In my opinion there are numerous number of factors that have effect on the development and improvement on a nursing professional identity. I have learnt a lot of new information from this assignment. It is a broad topic and I feel I still have a whole lot more to learn about developing my professional identity in the future. REFERENCES D. Oââ¬â¢Brien, N. Strzyzewski and T.Szpara 2013, Getting to Success: Supporting Staff Nurses to Enhance Practice and Professionalism. Journal of PeriAnesthesia Nursing. Volume 28, Issue 3, June 2013, Pages e34à Available: http://www.sciencedirect.com/science/article/pii/S1089947213002037#à Accessed 7th September 2014 G. Willetts and D.Clarke 2012 The shaping of Professional Identity in Nursing: An ethnographic Case Studyà Available: http://global-qhr.org/wp-content/uploads/2012/02/Abstracts.pdf Accessed 7th September 2014à S .M. DeJong 2014 Chapter Oneââ¬âWhat is Professionalism? Social Media and Online Professionalism in Health Care 2014, Pages 1ââ¬â11à Available: http://www.sciencedirect.com/science/article/pii/B9780124081284000011à Accessed 7th September 2014 Tiia Tamm, 2010 Professional Identity and Self-concept of Estonian Social Workers .University of Tampereà Available: http://tampub.uta.fi/bitstream/handle/10024/66631/978-951-44-8115-4.pdf?sequence=1#page=69zoom=180,-4,613à Accessed 7th September 2014 Stem Bark Extracts of Anthocleista: Antioxidant Properties Stem Bark Extracts of Anthocleista: Antioxidant Properties Original 1 Research Article PHYTOCHEMICAL AND ANTIOXIDANT PROPERTIESà OF STEM BARK EXTRACTS OF ANTHOCLEISTA NOBILIS ABSTRACT Aim: This study was carried out to determine the phytochemical and antioxidant properties of extractsà of Anthocleista nobilis. Methodology: Acetone and methanol extracts of A. nobilis were investigated for their free radical scavenging activities in the presence of diphenyl picrylhydrazyl (DPPH) using ascorbic acid as positive control. Results: In the phytochemical screening of the plant extracts, results showed that both extracts recorded the presence of alkaloids, tannins, flavonoids, and glycosides. The acetone and methanol extracts of A. nobilis exhibited significant free radical scavenging activities in the DPPH assay with theà acetone extract recording better activity. The antioxidant activity of the two extracts was however, lower than that recorded by the positive control-ascorbic acid. Conclusion: The result suggests that the extracts have potential antioxidant properties which could beà exploited in medicine and food industry. Keyword: Anthocleista nobilis, antioxidant, DPPH. 1. INTRODUCTION Plants have been utilized by humans to treat various infectious and non-infectious diseases since theà beginning of time as they constitute a reliable source of therapy. In addition, they are also the primaryà source for many of todayââ¬â¢s medicines [1,2,3]. For instance, purified secondary metabolites such as vinca alkaloids are used widely in cancer chemotherapy [4].Quinine and artemisinin, derived from theà bark of the cinchona and qinghaosu trees respectively and their derivatives have been widely used forà the treatment of malaria [5,6,7]. Some of these secondary metabolites are synthesized for specific purposes by plants. Others may beà by-products of plant metabolism which currently have no known biological function. Hydroxylatedà coumarins have been reported to accumulate in carrots in response to fungal invasion [8],à glucosinolates, recognized for their antimicrobial properties[9], have also been reported in Brassiaà rapa in response to fungal infection/attack [10]. These secondary metabolites fall under one of the major phytochemicals such as flavonoids, tannins,à glycosides, steroids, terpenes, etc. Although these compounds are known to be bioactive, a lot is yetà to known about their mechanisms of action. Some of these groups of compounds such as flavonoids,à proanthocyanidins and tannins are polyphenols or phenolic [11]. Phenolics are known for theirà antioxidant properties [12]. Antioxidants are molecules that halt oxidation processes while the molecules get oxidized in theà process. The antioxidant activity of phenolics is derived from their ability to act as reducing agents,à donating hydrogen, electrons and stabilizing reactive oxygen species (ROS) [13]. ROS such asà hydroxyl radicals (OH.), superoxide anion radicals (O2à .) and singlet oxygen (145 O2) have been implicatedà in many disease processes such cancer, diabetes, ageing, atherosclerosis and neurodegeneration[14]. Consumption of fresh fruits and vegetables rich in plant polyphenols(antioxidants) as food hasà been reported as a protection against several diseases which include cancer, cardiovascularà diseases, diabetes, asthma etc. [15] suggesting that the mechanism of action of the secondaryà metabolites can be traced to their antioxidant properties. ROS can cause the deterioration of food byà causing lipid peroxidation. The rancid odor and taste of lipid containing food such as palm oil occur asà result of lipid peroxidation which in turn affects the nutritional value and safety 52 of such food itemsà [16]. Recently, the use of synthetic preservatives and other additives has been linked to increasedà prevalence of cancer. For instance, sodium nitrate and sodium nitrite used to preserve processedà meat has been implicated in bowel cancer [17]. As a result, the demand for natural food preservativesà has been rising steadily [14] and that prompted the European Union funded AGROCOS to include theà replacement of synthetic preservatives and other ingredients as part of the FP7 research topics whichà has yielded about 30 natural compounds for the food and cosmetic industries presently being furtherà tested by Greek and German companies [18]. Anthocleista nobilis which is commonly called the candelabrum or cabbage tree in English language,à Duwa Kuchi in Nupe language, Kwari in Hausa language and Apa Ora in Yoruba language belongs toà the family Loganiaceae [19]. Anthocleista nobilisis used in local medicine in parts of West Africa forà curing fever, stomach ache, diarrhoea, and gonorrhoea, and are also aspoultice for sores [20,21]. Theà present study was designed to investigate the antioxidant properties of extracts of Anthocleista nobilisà by measuring their free radical scavenging properties with aim of confirming the ethnobotanical useà and assessing their suitability as preservatives in the food industry. 2. MATERIALS AND METHODS 2.1 Sample collection The stem barks of A. nobilis were collected in March, 2014 from Ezza Community in Ebonyi state,à Nigeria. They were identified by a plant taxonomist in the Department of Pharmacognosy andà Traditional Medicine, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria.à The plant material was pulverized into fine powder using a mechanical grinding machine. 2.2 Extraction à 500 g of thepulverized plant was macerated in 1 Liter of acetone and methanol respectively for 48à hrs.The mixture was sieved using porcelain cloth and was further filtered using No. 1 Whatman filterà à paper. The filtrate was concentrated using rotary evaporator and the crude concentrate was thenà stored at 4o80 C until required for further experiment. 2.3 Phytochemical Screening à In the phytochemical analysis of the extracts of A. nobilis stem barks, tests for alkaloids, tannins,à saponins, flavonoids, steroids, cardiac glycosides, and terpenoids were carried out using standardà methods reported by Trease and Evans [19]. 2.4 In vitro free radical scavenging activity of the extract (Diphenyl dipicrylhydrazyl (DPPH) freeà radical scavenging activity) The free radical scavenging activity of the various extracts and ascorbic acid was measured withà DPPH. Three (3) mL of DPPH in methanol solution was added 100 à ¼L of different concentrations ofà extracts (10-1000 à ¼g/mL). After 30 minutes, the absorbances of the extract solutions ion methanolà were measured at 517 nm after calibration with methanol. Lower absorbance indicated higher freeà radical scavenging activity. The antioxidant activity of the extracts was expressed as IC50 which wasà defined as the concentration of the extracts that inhibited the formation of DPPH radical by 50 %. Eachà experiment was carried out in triplicate. The average absorbance for each triplicate was calculatedà and the percentage inhibition of the extracts at different doses calculated using the formula:à %Inhibition 100 o s o A A x A âËâ à à ¯Ã¢â ¬Ã ½ Where Ao is absorbance of control and As the absorbance of tested extracts. 3. RESULTS AND DISCUSSION The antioxidant activity of the extracts of A. nobilis was investigated and the results were compared toà à that of ascorbic acid which was used as the positive control. The results are shown in Figures 1. Also,à à the result of the phytochemical analysis links the presence of flavonoids and other polyphenols to theà à antioxidant activities observed. Different levels of the secondary metabolites based on the testsà à carried out were observed as displayed in Table 1. Table 1. Result of the Phytochemical Analysis of A. nobilis Extracts UNDER PEER REVIEW Alkaloids Tannins Saponins Flavonoids Glycosides Terpenoids Steroids Methanol extract ++ +++ ++ + ++ Acetone extract + ++ ++ + ++ +++ = Abundantly present; ++ = Moderately present; += Mildly 108 present; =Absent Figure 1. Comparison between free radical scavenging activities of acetone and methanolà extracts of A. nobilis and ascorbic acid determined using DPPH. IC50 for Acetone extract= 400à à ¼g/mL; Methanol extract= 800 à ¼g/mL; Ascorbic acid= 30 à ¼g/mL. The bark of A. nobilis is used as warm expellant and as antimalarial remedy amongst otherà à ethnobotanical uses by the Ezza people in Nigeria. The result of this study showed that the crudeà à extracts showed significant antioxidant properties with the acetone extract of A. nobilis recording anà à IC50 of 400 à ¼g/ml. The methanol extract of A. nobilis had the lowest antioxidant activity with an IC50 ofà à 800 à ¼g/mL. à However, the acetone extract of A. nobilis which had the best antioxidant activity compared to theà methanol extract had moderate presence of terpenoids, flavonoids and tannins. Flavonoids andà à tannins are polyphenols which are known to have potent antioxidant properties due to there reducingà à ability [23]. The lower activity observed can be explained by the fact that flavonoids only exihibità à antioxidant properties if features such ortho-dihydroxy substitution in the B-ring, C2-C3 double bondà à and a carbonyl group in C-4 of the C-ring are present [24]. Quercetin is a good example of a flavonoidà à with such structural features and it has a high antioxidant property [25]. Although the free radical scavenging activities observed for the extracts were not as much as thatà observed for ascorbic acid which was the positive control, the antioxidant activity of the extracts, canà be said to be significant considering that the extracts were in the crude form. Further purification of theà aqueous extract is expected to produce pure compounds with improved antioxidant property. 4. CONCLUSION The findings of this study reveal that Anthocleista nobilis possess antioxidant property. This provides aà scientific basis for the ethnomedicinal utilization of this plant. The antioxidant property of this plantà may qualify it for use as preservatives of natural origin in the food industry. Further tests are needed to explore the exact mechanism of action at the molecular level and to know the actual 138 constituentsà responsible for these activities. %inhibition Concentration(à ¼g/ml) % Inhibition Versus Concentration Acetone extract Methanol extract Ascorbic acid UNDER PEER REVIEW REFERENCES Krishna S, Bustamante L, Haynes RK, Staines HM, Artemisinins: their growing importance inà medicine. Trends PharmacolSci. 2008, 29(10):520-527. Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M, Melissaà officinalis extract in the treatment of patients with mild to moderate Alzheimerââ¬â¢s disease: a doubleà blind, randomised, placebo controlled trial. J Neurol, Neurosurgery Psych. 2003, 74(7):863-866. Luciano-Montalvo C, Boulogne I, Gavillà ¡n-Suà ¡rez J. A screening for activities of Carribean herbalà remedies. BMC Comp Alter med. 2013, 13:126. Sahenk Z, Brady ST, Mendell JR. Studies on the pathogenesis of vincristine-inducedà neuropathy. Muscle Nerve. 1987, 10(1):80-84. Haynes RK, Krishna S: Artemisinins, activities and actions. Microb Infect. 2004, 6(14):1339-1346.à Bucher C, Sparr C, Schweizer WB, Gilmour R, Fluorinated Quinine Alkaloids, Synthesis, X-rayà Structure Analysis and Antimalarial Parasite Chemotherapy. Chem-A Euro J. 2009, 15(31):7637-77. Wright C, Plant derived antimalarial agents, new leads and challenges, PhytochemRev. 2005, 4(1):55-61. Darvill, A. G. and Albersheim, P.: Phytoalexins and their elicitors a defense against microbialà infection in plants. Annu Rev Plant Physiol. 1984, 35:243-275. Al-Gendy AA, El-gindi OD, Hafez AS, Ateya AM, Glucosinolates, volatile constituents andà biological activities of Erysimum corinthium Boiss. (Brassicaceae). Food Chem.à 2010, 118(3):519-524. Abdel-Farid IB, Jahangir M, van den Hondel CAMJJ, Kim HK, Choi YH, Verpoorte R: Fungalà infection-induced metabolites in Brassica rapa. Plant Sci. 2009, 176:608-615. Cowan M, Plant products as antimicrobial agents, Clinical Microbiol Rev. 1999, 12:564-582 Khan RA, Khan MR, Sahreen S, Ahmed M. Evaluation of phenolic contents and antioxidantactivityà of various solvent extracts of Sonchusasper (L.) Hill. Chem Central J. 2012, 6:12 Huda-Faujan N, Noriham A, Norrakiah AS, Babji AS, Antioxidant activity of plants methanolicà extracts containing phenolic compounds.African JBiotech.2009, 8:484-489 Saeed N, Khan MR, Shabbir M. Antioxidant activity, total phenolic and totalflavonoid contents ofà whole plant extracts of Torilis leptophylla. LBMC Complementary and Alternative Medicine.à 2012,12:221-233. Pandey KB, Rizvi SI, Plant polyphenols as dietary antioxidants in human health and disease. Oxidà Med Cell Longev. 2009, 2: 270ââ¬â278. Monica Leopoldini M, Russo N, Toscano M, The molecular basis of working mechanism of naturalà polyphenolic antioxidants Food Chem 2011, 125:288-306. Zhu H, Yang X, Zhang C, Zhu C, Tao G, Zhao L, Shu, Z, Cai J, Dai, S, Qin, Q, Xu, L, Cheng H,à Tang T, Sun X. Red and processed meat intake is associated with higher gastric cancer risk: aà meta-analysis of epidemiological observational studies Plos one 2013, 8:1-10. ESASTAP (2014). EU Project hunts for natural substitutes for synthetics.à http://www.esastap.org.za/news/20140911.php (accessed 27/09/2014).à à Ayodele PO, Okonko IO, Evans E, Okerentugba PO, Nwanze JC, Onoh CC. Effect ofà AnthocleistaNobilis Root Extract on the Haematological Indices of Poultry Chicken Challengedà with Newcastle Disease Virus (NDV). Science and Nature.2013, 2(2): 65-73. Irvine, FR. Woody plants of Ghana. Oxford University Press, London, UK.1961. pp.194, 208, 548. Dokosi, OB. Herbs of Ghana. Ghana Universities Press. 1998. pp. 615-623. Trease GE, Evans WC. Pharmacognosy.11th Edn, Balliere and Tindall. Eastbourne, Londonà 1983, pp: 243-551. Rodrigues HG, Diniz YS, Faine LA, Galhardi CM, Burneiko RC, Almeida JA, Ribas BO, Novelli EL,à Antioxidant effect of saponin: potential action of a soybean flavonoid on glucose tolerance and riskà factors for atherosclerosis.Int J Food Sci Nutr. 2005. 56(2):79-85. Chen Y, Miao Y, Huang L, Li J, Sun H, Zhao Y, Yang JY, Zhou W. Antioxidant activities ofà saponins extracted from Radix trichosanthis: an in vivo and in vitro evaluation. BMC Complementà à Alt Med.2014,14:86-94. Zhang H, Zhou Q, Tyrosinase Inhibitory Effects and Antioxidative Activities of Saponins fromà XanthocerasSorbifolia Nutshell, PlosOne 2013, 8:e70090-e70096
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.